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The oscillation spectrum of a compound drop
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Under microgravity conditions the equilibrium shape of a compound drop, consisting of
two immiscible mutually wetting liquids, is given by a spherical liquid core, encapsulated
by the second liquid phase. Due to energy considerations, the outer liquid is the one with
the lower (vapour-liquid) surface tension. The oscillation spectrum of such a compound
drop corresponds to that of two coupled oscillators, one being driven by the surface
tension, while the other is due to the interfacial (liquid-liquid) tension between the two
immiscible liquids. Therefore, in principle, the values of both, the surface and the interfacial
tension, can be derived from the frequencies of the coupled oscillations.
In this paper, an analytic expression is presented, relating the frequency spectrum to the
surface and interfacial tension, respectively. In addition, the concept for technical
realisation using electromagnetic levitation and copper-cobalt as a model system, is
discussed. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
As the temperature of a homogeneous melt of a mono-
tectic alloy is lowered below the binodal temperature,
demixing sets in and small droplets of one liquid, L1, in
the matrix of the other liquid, L2, are formed. These two
immiscible liquids do not consist of the pure compo-
nents, but have concentrations according to the phase
boundary of the miscibility gap; therefore, L1 is rich
in component 1, while L2 is rich in component 2. This
initial phase is energetically very unfavourable, due to
the high interface area created between L1 and L2. In
the next stage, Ostwald ripening sets in [1]. This dif-
fusive mechanism leads to the growth of large drops
at the expense of the small ones, thereby coarsening
the structure of the dispersion (emulsion) and finally
leading to two separated liquid phases L1 and L2.

In general, the interfacial tension between two liq-
uids is difficult to measure, and only few data exist [2].
The oscillating drop technique [3] is non-contact mea-
surement technique for surface tension measurements
of levitated liquid drops. In its original form, it assumes
a homogeneous inviscid drop, free of external forces. In
this ideal case, the frequency of surface oscillations is
simply related to the surface tension σ 0 by Rayleigh’s
formula [4]

ω2
0 = 8σ0

ρR3
0

(1)

where ρ is the density of the drop and R0 its radius. By
substituting M = ρ 4 πR3

0/3, the apparent density de-
pendence of the frequency disappears which makes this
equation particularly easy to use. Viscous effects have
been included later [5], but can generally be neglected
for liquid metals. The influence of external forces, like
gravity and the electromagnetic levitation field, is more

severe, because it splits and shifts the single Rayleigh
frequency. A correction formula has been worked out
by Cummings and Blackburn [6], which has been ver-
ified experimentally through a benchmark experiment
in microgravity [7].

In this paper, we propose to extend the oscillating
drop technique to the measurement of the interfacial
tension between two immiscible liquids. We assume
that the final structure (after Ostwald ripening has fin-
ished) of a compound drop, consisting of two immisci-
ble liquids, wetting each other, will consist of a core of
L1 with density ρ1, surrounded by a layer of L2 with
density ρ, as shown in Fig. 1. Effects of viscosity and
external forces will be neglected. The total surface en-
ergy of such a configuration is given by:

W = σ0 A2 + σ12 Ai (2)

where σ0 is the surface tension of liquid 2, σ12 is the
interfacial tension between liquids 1 and 2, A2 = 4 π R2

0
is the surface area of the outer surface, and Ai = 4π R2

i
is the interface area between the two liquids. Therefore,
in order to minimize this surface energy, the liquid with
the smaller surface energy will form the outer layer. If
this compound drop is spherical and concentric, the dy-
namics of its oscillations can be calculated analytically.
In fact, Saffren, Elleman and Rhim have calculated the
normal modes of a concentric three fluid system [8].
They formulated their theory for a binary compound
drop immersed in a third host fluid of infinite extent.
The present case of a levitated drop can be derived from
their results by setting ρ0, the density of the host fluid,
equal to zero. Also, we are interested in the fundamental
� = 2 mode only. Higher modes are strongly damped,
and for concentric, spherical drops, there is no coupling
of modes with different �. In the following chapter, we
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Figure 1 Cross section of a spherical, concentric compound drop con-
sisting of two immiscible liquids with densities ρi and ρ, radii R0 and
Ri, surface tension of the outer liquid σ0, and interfacial tension σ12.

will derive explicit asymptotic formulae from Saffren’s
theory which will allow us to measure both, surface and
interfacial energy of a compound drop simultaneously.

2. Drop dynamics
Using ref [8] as a starting point, asymptotic relations
for the normal mode frequencies ω of a concentric,
force-free, inviscid compound drop can be derived.

A number of symbols will be used which are defined
as follows:

ω0 is the unperturbed Rayleigh frequency (Equation
1) of a simple drop with density ρ, radius R0 and sur-
face tension σ0 (see also Fig. 1 for the definition of the
symbols).

τ =
√

R0

Ri
(3)

is the square root of the ratio between outer and inner
radius,

σ =
√

σ0

σ12
(4)

is the square root of the ratio of the surface tension and
the interface tension, and

�ρi = 3

5

ρi − ρ

ρ
(5)

is the weighted relative density difference between liq-
uid L i and liquid L0.

In the following, the frequencies will be discussed as
a function of σ , with τ and �ρi as parameters. First, the
asymptotic behaviour of the normal mode frequencies
for small interfacial tension σ12, i.e. for σ → ∞ are

given by [9]:

ω2
+ = ω2

0

(
1 − 5

3

�ρi

1 + �ρi
τ−10

)
(6)

ω2
− = ω2

0
3

5

τ 6

σ 2
(1 + �ρi)

−1

×
[

1 − τ−10 1 + 2�ρi

1 + �ρi

]
(7)

We can simplify Equations 6 and 7 for �ρi � 1.
They then read:

ω2
+ = ω2

0

(
1 − 5

3

�ρi

τ 10

)
(8)

and

ω2
− = ω2

0
3

5

τ 6

σ 2
(1 − τ−10) (9)

The physical meaning of Equation 9 becomes obvi-
ous by introducing ωi as follows:

ω2
i = 8σ12

ρi R3
i

(10)

which corresponds to the Rayleigh frequency of a single
drop with surface tension σ12, radius Ri and density ρi.
We then have:

ω2
− = 3

5
ω2

i (1 − τ−10) (11)

To conclude the discussion of the frequencies, we
quote the limiting value of ω− for σ → 0. It is given
by [9]:

lim
σ→0

ω2
− = ω2

0
τ 10 − 1

τ 10 + 2/3
(12)

For small �ρi the “forbidden band”, i.e. the differ-
ence ω2

+ − ω2
− is roughly given by:

ω2
+ − ω2

− = ω2
0

5/3

τ 10 + 2/3
(13)

The asymptotic values for the frequencies, Equation
8 and 9 are shown in Fig. 2 together with the exact
solutions as a function of σ for �ρi = −0.01 and τ =
21/6.

It remains to discuss the contribution of both nor-
mal modes to the oscillations of the outer radius, R0.
The normal modes, i.e. the eigenvectors δ+ and δ− of
the oscillations, are linear combinations of δR0 and
δRi, where δR0,i are the amplitudes of the oscillations
around the equlibrium value of the radii in a given di-
rection.

If we express δR0 in terms of the normal modes as:

δR0 = a0+δ+ + a0−δ− (14)
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Figure 2 The squared and normalized normal mode frequencies ω2±/ω2
0

as a function of σ , the square root of the ratio of surface to interface
tension for τ = 1.12 and �ρi = −0.01. Full lines: exact solutions, dotted
line: asymptotic solution for ω−, Equation 9; dashed line: asymptotic
solution for ω+, Equation 8.

Figure 3 The contribution of the low frequency normal mode to oscil-
lations of the outer radius R0 as a function of σ , the square root of the
ratio of surface to interface tension for τ = 1.12 and �ρi = −0.01.

then a0− is the contribution of the normal mode with
frequency ω− to the oscillations of the outer radius R0.
Asymptotically, we find for a0− [9]:

|a0−| = 1

2τ 2σ 2
(15)

As is evident, the oscillation spectrum of R0 is dom-
inated by ω+ for large σ , but it does contain contribu-
tions with frequency ω−. In Fig. 3, |a0−| is plotted as a
function of σ for the same parameters as in Fig. 2.

3. Experimental
The oscillations of a compound drop have been ob-
served and analysed by Saffren et al. [8] for transpar-
ent water-oil droplets suspended in a neutral buoyancy
tank filled with oil. We are interested in liquid metals,
for which their method is not applicable, and a levita-
tion technique must be used, in our case electromag-
netic levitation. Furthermore, applying the oscillating
drop technique [3] to non-transparent metallic drops, it
is only possible to observe the oscillations of the outer
radius R0 of a levitated drop. Nevertheless, as shown
above, the Fourier transform of the time signal contains

Figure 4 The phase diagram of Cu-Co, showing the experimentally de-
termined liquidus and the metastable miscibility gap.

both normal mode frequencies and therefore all neces-
sary information to measure both, surface and interface
tension.

The present investigation concerns the alloy Cu-Co,
which shows a metastable miscibility gap, i.e., the melt
has to be undercooled before demixing sets in [10,11].
This alloy is of particular interest because at the concen-
tration Co50Cu50 the difference �T between liquidus
temperature Tl and the critical temperature Tc has a
minimum of �T ≈ 100 K only. The phase diagram in-
cluding the experimentally determined miscibility gap,
is shown in Fig. 4. To measure the interfacial tension in
a metastable system is challenging, because nucleation
and solidification must be suppressed. Undercooling of
metallic melts by containerless processing, using elec-
tromagnetic levitation, is possible and has been applied
to the alloy Cu-Co [11–13]. The interfacial tension σ 12
between the two coexisting liquid phases shows criti-
cal behaviour near the critical temperature: σ12(T ) ∝
(Tc − T )α , whereas for large undercooling it can be
approximated by the difference of the surface tensions
of the two liquids: σ12 = |σ1 − σ2| which implies a
linear temperatute behaviour. The critical exponent α

has a classical value of 3/2; renormalization theory [14]
yields α = 1.26.

In the following, we estimate the parameters for the
system Cu-Co. The surface tension of this alloy was
measured [13] and one can estimate σCo ≈ 1.8 N/m
and σCu ≈ 1.3 N/m. Therefore σ12 ≈ 0.5 N/m, and
σ = (σCu/σ12)1/2 ≈ 1.6. This value underestimates σ .
The densities of liquid copper and cobalt were mea-
sured by Saito and coworkers [15, 16]. At the melting
point, the quoted values are: ρCu(Tm) = 7.86 (g/cm3),
ρCo(Tm) = 7.75 (g/cm3). Therefore, �ρi ≈ −0.01. For
the parameter τ we use τ = 21/6, which corresponds to
equal volumes. For these values and σ > 2, Equation
8 and 18 yield the frequencies with an accuracy better
than 20%. For σ > 3, |a0−| drops below 10%, and ω−
may be difficult to detect in the oscillation spectrum.

In the derivation of the above formulae, the presence
of external forces, namely gravity and electromagnetic
field, was neglected. As has been discussed in the intro-
duction, these forces lead, in the case of a homogeneous
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Figure 5 Microstructure of Co-40 wt%Cu sample processed in parabolic
flight. Cobalt rich phase is dark, copper rich phase is bright. The sample
is covered by a thin Cu-rich layer.

drop, to a splitting of the Rayleigh frequency into up to
2�+1 = 5 peaks and an additional shift of the mean fre-
quency. We expect a similar behaviour for a compound
drop, namely a splitting of both, ω+ and ω−, into up
to 5 frequencies in the oscillation spectrum of such a
drop. In fact, Brooks et al. have reported a frequency
spectrum of 9 peaks for a levitated sample of a multi-
component industrial alloy [17]. This complication can
be avoided by performing the experiment under micro-
gravity conditions, where both the gravitational and the
electromagnetic field are negligibly small. In fact, such
an experiment is planned in the framework of an ESA-
project [18] for the International Space Station. A pre-
liminary experiment was performed during a parabolic
flight campaign [19]. A Co-40 wt%Cu sample of 0.8
g mass was positioned, melted and undercooled during
app. 20s of microgravity. While in the liquid phase, the
drop was subjected to short heating pulses which trig-
gered oscillations. The oscillations were recorded by a
standard CCD camera with 50 frames per second. Due
to the short time available, a complete Ostwald ripen-
ing was not achieved, as shown in Fig. 5. The resulting
liquid drop consists of several copper rich droplets in-
side a cobalt-rich host fluid. For such a case, we expect
a frequency distribution instead of a single frequency
ω−, dominated by the radius distribution of the droplets.
The frequency spectrum of the oscillation is shown in
Fig. 6 as a function of the natural frequency ν = ω/2π .
A broad peak is visible around 14 Hz. Due to the low
sampling rate of the video camera, this peak is an alias
of the real frequency which can be obtained by mir-
roring the spectrum around the sampling frequency:
νreal = 50 − νapparent. The real frequency is therefore
around 36 Hz. This peak corresponds to ω+, or, ap-
proximately, to the Rayleigh frequency ω0, Equation 1.
Inserting the mass of the drop into this equation, we ob-
tain for the surface tension of the drop σ0 = 1.27 N/m,
in reasonable agreement with published data [13].

In order to estimate the position and strength of the
second frequency, ω−, we need to calculate τ . From

Figure 6 Oscillation spectrum of a liquid Co-40 wt%Cu sample pro-
cessed in parabolic flight. Due to the low sampling rate, there is aliasing,
and higher frequencies are folded back onto the low frequency range.
The real frequency of the aliased peaks is shown on the top scale.

Equation 3 we obtain:

τ 6 = 1 + MCu

MCo

ρCo

ρCu
(16)

Inserting the numerical values given above, and in-
serting Equation 16 into Equation 9, we get:

ν− = 0.47ν+ ≈ 17H z (17)

Unfortunately, this region overlaps with the alias of
the Rayleigh peak and can therefore not be evaluated. In
view of the microstructure, Fig. 5, it seems unrealistic
to expect a single peak anyway.

For the oscillation strength, Equation 15, we obtain

|a0−| = 1

2τ 2σ 2
≈ 0.16 (18)

If the cobalt core consisted of a single drop, the am-
plitude of this oscillation would be about 16% of the
surface oscillation. As can be inferred from Fig. 6, the
noise level in the frequency spectrum is about 10%, and
this peak should be detectable. However, for incomplete
demixing, the oscillation strength is spread over a broad
frequency band, defined by the size distribution of the
droplets, as stated above.

4. Summary
We have presented explicit expressions for the normal
mode frequencies of a concentric spherical compound
drop, which is the prevailing geometry under micro-
gravity conditions. The dependence of these frequen-
cies on the ratio between surface and interface tension
was discussed, and the asymptotic behaviour for large
values of this ratio was derived. Considering the eigen-
vectors of the normal modes it was shown that both
frequencies can be determined from recording the oscil-
lations of the (outer) radius of the compound drop. Pre-
liminary results from an experiment with a Co-40 wt%
Cu sample during parabolic flights were reported,
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indicating that 20 s are insufficient for complete phase
separation and ripening. For long duration experiments
on board the ISS, the numerical estimates fo Co-Cu hint
towards the feasibility of this concept.
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